Diversify Intensification Phases in Local Search for SAT with a New Probability Distribution
نویسندگان
چکیده
A key challenge in developing efficient local search solvers is to intelligently balance diversification and intensification. This study proposes a heuristic that integrates a new dynamic scoring function and two different diversification criteria: variable weights and stagnation weights. Our new dynamic scoring function is formulated to enhance the diversification capability in intensification phases using a user-defined diversification parameter. The formulation of the new scoring function is based on a probability distribution to adjust the selecting priorities of the selection between greediness on scores and diversification on variable properties. The probability distribution of variables on greediness is constructed to guarantee the synchronization between the probability distribution functions and score values. Additionally, the new dynamic scoring function is integrated with the two diversification criteria. The experiments show that the new heuristic is efficient on verification benchmark, crafted and random instances.
منابع مشابه
A Switching Criterion for Intensification and Diversification in Local Search for SAT
We propose a new switching criterion, namely the evenness or unevenness of the distribution of variable weights, and use this criterion to combine intensification and diversification in local search for SAT. We refer to the ways in which state-of-the-art local search algorithms adaptG2WSATP and VW select a variable to flip, as heuristic adaptG 2WSATP and heuristic VW , respectively. To evaluate...
متن کاملWeight-Enhanced Diversification in Stochastic Local Search for Satisfiability
Intensification and diversification are the key factors that control the performance of stochastic local search in satisfiability (SAT). Recently, Novelty Walk has become a popular method for improving diversification of the search and so has been integrated in many well-known SAT solvers such as TNM and gNovelty. In this paper, we introduce new heuristics to improve the effectiveness of Novelt...
متن کاملChoosing Probability Distributions for Stochastic Local Search and the Role of Make versus Break
Stochastic local search solvers for SAT made a large progress with the introduction of probability distributions like the ones used by the SAT Competition 2011 winners Sparrow2010 and EagleUp. These solvers though used a relatively complex decision heuristic, where probability distributions played a marginal role. In this paper we analyze a pure and simple probability distribution based solver ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSwitching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT
One way to design a local search algorithm that is effective on many types of instances is allowing this algorithm to switch among heuristics. In this paper, we refer to the way in which non-weighting algorithm adaptGWSAT+ selects a variable to flip, as heuristic adaptGWSAT+, the way in which clause weighting algorithm RSAPS selects a variable to flip, as heuristic RSAPS, and the way in which v...
متن کامل